翻訳と辞書
Words near each other
・ Krameria bicolor
・ Krameria cistoidea
・ Krameria erecta
・ Krameria ixine
・ Krameria lappacea
・ Kramers (crater)
・ Kramers Ergot
・ Kramers F.C.
・ Kramers theorem
・ Kramers' law
・ Kramers' law (disambiguation)
・ Kramers' opacity law
・ Kramersmolen, Goutum
・ Kramerspitz
・ Kramers–Heisenberg formula
Kramers–Kronig relations
・ Kramers–Wannier duality
・ Kramfors
・ Kramfors Municipality
・ Kramfors-Alliansen
・ Kramfors-Alliansen Fotboll
・ Kramgasse
・ Kramgoa låtar 10
・ Kramgoa låtar 11
・ Kramgoa låtar 12
・ Kramgoa låtar 13
・ Kramgoa låtar 14
・ Kramgoa låtar 15
・ Kramgoa låtar 16
・ Kramgoa låtar 17


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kramers–Kronig relations : ウィキペディア英語版
Kramers–Kronig relations
The Kramers–Kronig relations are bidirectional mathematical relations, connecting the real and imaginary parts of any complex function that is analytic in the upper half-plane. These relations are often used to calculate the real part from the imaginary part (or vice versa) of response functions in physical systems, because for stable systems, causality implies the analyticity condition, and conversely, analyticity implies causality of the corresponding stable physical system. The relation is named in honor of Ralph Kronig and Hendrik Anthony Kramers. In mathematics these relations are known under the names Sokhotski–Plemelj theorem and Hilbert transform.
==Formulation==

Let \chi(\omega) = \chi_1(\omega) + i \chi_2(\omega) be a complex function of the complex variable \omega , where \chi_1(\omega) and \chi_2(\omega) are real. Suppose this function is analytic in the closed upper half-plane of \omega and vanishes like 1/|\omega| or faster as |\omega| \rightarrow \infty. Slightly weaker conditions are also possible. The Kramers–Kronig relations are given by
:\chi_1(\omega) = \mathcal\!\!\!\int \limits_^\infty \,d\omega'
and
:\chi_2(\omega) = - \mathcal\!\!\!\int \limits_^\infty \,d\omega',
where \mathcal denotes the Cauchy principal value. So the real and imaginary parts of such a function are not independent, and the full function can be reconstructed given just one of its parts.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kramers–Kronig relations」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.